One observation is that by symmetry
int_0^pi ln[1 - cos(x)] dx = int 0^pi ln[1 + cos(x)] dx
and so the calculation is equivalent to
1/2 int_0^pi ln[ sin(x)^2 ] dx = 2 int_0^pi/2 ln[ sin(x) ] dx.
Now we can use a similar trick again:
int_0^pi/2 ln[ sin(x) ] dx = int_0^pi/2 ln[ cos(x) ] dx
so
4 int_0^pi/2 ln[ sin(x) ] dx = 2 int_0^pi/2 ln[ sin(x) cos(x) ]
= 2 int_0^pi/2 ln[1/2] dx + 2 int_0^pi/2 ln[sin(2x)] dx
= - pi ln[2] + int_0^pi ln[sin(u)] du
(using substitution u = 2x)
= -pi ln[2] + 2 int_0^pi/2 ln[ sin(x) ] dx
and so the original integral is -pi ln[2].
One observation is that by symmetry
int_0^pi ln[1 - cos(x)] dx = int 0^pi ln[1 + cos(x)] dx
and so the calculation is equivalent to
1/2 int_0^pi ln[ sin(x)^2 ] dx = 2 int_0^pi/2 ln[ sin(x) ] dx.
Now we can use a similar trick again:
int_0^pi/2 ln[ sin(x) ] dx = int_0^pi/2 ln[ cos(x) ] dx
so
4 int_0^pi/2 ln[ sin(x) ] dx = 2 int_0^pi/2 ln[ sin(x) cos(x) ]
= 2 int_0^pi/2 ln[1/2] dx + 2 int_0^pi/2 ln[sin(2x)] dx
= - pi ln[2] + int_0^pi ln[sin(u)] du
(using substitution u = 2x)
= -pi ln[2] + 2 int_0^pi/2 ln[ sin(x) ] dx
and so the original integral is -pi ln[2].